

Welcome to intake_parquet’s documentation!

Load data from ODBC backends into pandas data-frames using Intake with this
package.

Contents:

	Quickstart
	Installation

	Usage

	API Reference

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

intake-odbc provides quick and easy access to tabular data stored in
ODBC data sources, which include a wide variety of traditional relational
database systems such as MySQL and Microsoft SQL Server. Some DB systems
such as PostgreSQL [https://github.com/ContinuumIO/intake-postgres] may have better/faster plugin implementations.

Installation

To use this plugin for intake [https://github.com/ContinuumIO/intake], install with the following command:

conda install -c intake intake-odbc

Setting up ODBC

Configuring ODBC is beyond the scope of this document, and generally not something
that it performed by an end-user, and generally requires the installation of
backend-specific drivers system-wide.

Specific documentation on the connection string and keyword arguments can be found
on the TurbODBC [http://turbodbc.readthedocs.io/en/latest/pages/odbc_configuration.html] website.

Usage

Ad-hoc

After installation, the functions intake.open_odbc
and intake.open_odbc_partitioned will become available.
Assuming you have an ODBC set up with a fully-configured connection named
"MSSQL" the following would fetch the contents of mytable into a pandas
dataframe:

import intake
source = intake.open_odbc('Driver={MSSQL}', 'SELECT * FROM mytable')
dataframe = source.read()

Two key arguments are required to define an ODBC data source: the DB connection
parameters, and a SQL query to execute. The former may be as simple as a TurbODBC
connection string, but can commonly be a set of keyword arguments, all of which are
passed on to turbodbc.connect(). The query must have a valid syntax to be
executed by the backend of choice.

In addition, the following arguments are meaningful for the non-partitioned
data source:

	head_rows: how many rows are read from the start of the data to infer data

types for discovery

	mssql: a special flag to mark datasets which are backed by MS SQL Server, which

requires a different spelling of the LIMIT statement.

When using the partitioned ODBC source, further details are required in order to
build the queries for each partition. It requires an index column to use for
the WHERE statement, and the bounding values for each partition. The most
explicit way to provide the boundaries is with the divisions keyword, or
boundaries will be calculated as npartitions equally spaced boundaried between
the min/max values. Note that some partitions may be empty.

Further arguments when using partitioning:

	index: Column to use for partitioning

	max, min: the range of values of the index column to consider for building partitiona;

will execute a separate query to find these, if not given

	npartitions: the number of partitions to create

	divisions: explicit partition boundary values

Creating Catalog Entries

To us in a catalog entries must specify driver: odbc or driver: odbc_partioned.
Further arguments should be provided, as for the intake.open_* ad-hoc
commands, above. In particular, the connection parameters and query string
are required, and also the index column, if using partitioning.

It should be noted that SQL query strings are generally quite long; the appropriate
syntax may look like:

product_types:
 description: Randomly generated data
 driver: odbc_partitioned
 args:
 uri:
 sql_expr: |
 SELECT t.productid AS pid, t.productname, t.price, tt.typename
 FROM testtable t
 INNER JOIN testtypetable tt ON t.typeid=tt.typeid
 dsn: MSSQL
 mssql: true

Where in this case we provide a keyword argument to specify the connection and so
leave the uri field empty, and the special YAML syntax with "|" is used to
indicate the multi-line query, delimited by indentation.

Warning, while it is reasonable to include user parameters in the SQL query body,
free-form strings or environment variables should not be used, since they will allow
arbitrary code execution on the DB server (SQL injection). Similarly, the details of
ODBC connections are unlikely to be useful as user parameters, except possibly
to take the DB username and password from the environment.

Using a Catalog

Assuming a catalog file called cat.yaml, containing an ODBC source pdata, one could
load it into a dataframe as follows:

import intake
cat = intake.Catalog('cat.yaml')
df = cat.pdata.read()

The source may or may not be partitioned, depending on the plugin which was used and
the parameters. Use .discover() to find out whether there is partitioning, and if there
is, the partitions can be accessed independently.

Dask can be used to read a partitioned source in parallel (see method .to_dask());
note that there is some overhead to establishing connections from each worker, and the
same ODBC drivers and configuration must exist on each machine, in the case of a
distributed cluster.

API Reference

	intake_odbc.intake_odbc.ODBCSource(uri, sql_expr)

	One-shot ODBC to dataframe reader

	intake_odbc.intake_odbc.ODBCPartitionedSource(…)

	ODBC partitioned reader

	
class intake_odbc.intake_odbc.ODBCSource(uri, sql_expr, metadata=None, **odbc_kwargs)

	One-shot ODBC to dataframe reader

	Parameters

	
	uri: str or None

	Full connection string for TurbODBC. If using keyword parameters, this
should be None

	sql_expr: str

	Query expression to pass to the DB backend

	Further connection arguments, such as username/password, and may also

	

	include the following:

	
	head_rows: int (10)

	Number of rows that are read from the start of the data to infer
data types upon discovery

	mssql: bool (False)

	Whether to use MS SQL Server syntax - depends on the backend target
of the connection

	Attributes

	
	cache_dirs

	

	datashape

	

	description

	

	hvplot

	Returns a hvPlot object to provide a high-level plotting API.

	plot

	Returns a hvPlot object to provide a high-level plotting API.

	plots

	List custom associated quick-plots

Methods

	close()

	Close open resources corresponding to this data source.

	discover()

	Open resource and populate the source attributes.

	read()

	Load entire dataset into a container and return it

	read_chunked()

	Return iterator over container fragments of data source

	read_partition(i)

	Return a (offset_tuple, container) corresponding to i-th partition.

	to_dask()

	Return a dask container for this data source

	to_spark()

	Provide an equivalent data object in Apache Spark

	yaml([with_plugin])

	Return YAML representation of this data-source

	set_cache_dir

	

	
class intake_odbc.intake_odbc.ODBCPartitionedSource(uri, sql_expr, metadata=None, **odbc_kwargs)

	ODBC partitioned reader

This source produces new queries for each partition, where an index column
is used to select rows belonging to each partition

	Parameters

	
	uri: str or None

	Full connection string for TurbODBC. If using keyword parameters, this
should be None

	sql_expr: str

	Query expression to pass to the DB backend

	Further connection arguments, such as username/password, and may also

	

	include the following:

	
	head_rows: int (10)

	Number of rows that are read from the start of the data to infer
data types upon discovery

	mssql: bool (False)

	Whether to use MS SQL Server syntax - depends on the backend target
of the connection

	index: str

	Column to use for partitioning

	max, min: str

	Range of values in index to consider (will query DB if not given)

	npartitions: int

	Number of partitions to assume

	divisions: list of values

	If given, use these as partition boundaries - and therefore ignore
max/min and npartitions

	Attributes

	
	cache_dirs

	

	datashape

	

	description

	

	hvplot

	Returns a hvPlot object to provide a high-level plotting API.

	plot

	Returns a hvPlot object to provide a high-level plotting API.

	plots

	List custom associated quick-plots

Methods

	close()

	Close open resources corresponding to this data source.

	discover()

	Open resource and populate the source attributes.

	read()

	Load entire dataset into a container and return it

	read_chunked()

	Return iterator over container fragments of data source

	read_partition(i)

	Return a (offset_tuple, container) corresponding to i-th partition.

	to_dask()

	Return a dask container for this data source

	to_spark()

	Provide an equivalent data object in Apache Spark

	yaml([with_plugin])

	Return YAML representation of this data-source

	set_cache_dir

	

Index

 O

O

 	
 	ODBCPartitionedSource (class in intake_odbc.intake_odbc)

 	
 	ODBCSource (class in intake_odbc.intake_odbc)

 nav.xhtml

 Table of Contents

 		
 Welcome to intake_parquet’s documentation!

 		
 Quickstart

 		
 Installation

 		
 Setting up ODBC

 		
 Usage

 		
 Ad-hoc

 		
 Creating Catalog Entries

 		
 Using a Catalog

 		
 API Reference

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

